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Abstract

location.

was visualized and presented as a contrasting example.

Background: Current approaches for estimating social mixing patterns and infectious disease transmission at mass
gatherings have been limited by various constraints, including low participation rates for volunteer-based research
projects and challenges in quantifying spatially and temporally accurate person-to-person interactions. We developed a
proof-of-concept project to assess the use of automated video analysis for estimating contact rates of attendees of the
GameFest 2013 event at Rensselaer Polytechnic Institute (RPI) in Troy, New York.

Methods: Video tracking and analysis algorithms were used to estimate the number and duration of contacts for

5 attendees during a 3-minute clip from the RPI video. Attendees were considered to have a contact event if the
distance between them and another person was <1 meter. Contact duration was estimated in seconds. We also
simulated 50 attendees assuming random mixing using a geo-spatially accurate representation of the same GameFest

Results: The 5 attendees had an overall median of 2 contact events during the 3-minute video clip (range: 0-6).
Contact events varied from less than 5 seconds to the full duration of the 3-minute clip. The random mixing simulation

Conclusion: We were able to estimate the number and duration of contacts for 5 GameFest attendees from a
3-minute video clip that can be compared to a random mixing simulation model at the same location. The next phase
will involve scaling the system for simultaneous analysis of mixing patterns from hours-long videos and comparing our
results with other approaches for collecting contact data from mass gathering attendees.
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Background

During the response to the emerging 2009 HIN1 in-
fluenza pandemic, public health officials leveraged infec-
tious disease models to develop a range of pandemic
scenarios to explore the impact of social distancing mea-
sures on mitigating influenza transmission. However,
essential components of infectious disease models were
frequently based on constant or random contact rates
and mixing patterns of infectious and susceptible mem-
bers of the population. Better quantification of individual
contact rates and mixing patterns will become increa-
singly important as public health officials require more
accurate infectious disease models for refining or
validating pandemic mitigation strategies, including
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decisions regarding when to postpone or cancel mass
gatherings [1].

Mass gatherings can create environments highly condu-
cive for influenza transmission through virus-containing
respiratory droplets and possibly through fomites, due to
the spatial and temporal congregation of infectious and
susceptible individuals [2]. Factors that commonly deter-
mine the effectiveness of transmission include the level of
virus circulation, population susceptibility, and the inten-
sity and duration of social mixing at the mass gathering
[3,4]. As mixing patterns at conventions, sporting events,
and festivals are unlikely to be homogenous, a better un-
derstanding of this variability would greatly facilitate
decision-making regarding the public health risk of mass
gatherings during a pandemic. A number of approaches
have been used to estimate mixing patterns at mass gathe-
rings with variable levels of success, primarily due to the
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need for high participation among attendees and chal-
lenges associated with recording face-to-face interactions
in a spatially and temporally accurate way [5-8].

New techniques for analyzing video recordings have
recently been used for evaluating vehicular traffic flow
and airport security [9-14]. The success of these projects
suggests that video analysis could also be used to
address gaps in quantifying mixing patterns at mass
gatherings. In this article, we describe our proof-of-
concept project on the use of video analysis techniques
to estimate contact rates of attendees of the 2013
GameFest event at Rensselaer Polytechnic Institute (RPI)
in Troy, New York. We also present a geo-spatially ac-
curate random mixing simulation of the same GameFest
location.

Methods
Data collection
We used arrays of networked video cameras to record
attendees of the GameFest event at RPI in Troy, NY.
The event, which was held in RPI's Experimental Media
and Performing Arts Center (EMPAC) on April 26-27,
2013, had approximately 400 attendees. GameFest pro-
vided the chance for RPI students to demonstrate their
work in game design and simulations to the public, the
gaming industry, and other students and faculty.
EMPAC is a multipurpose facility with several large
studio rooms and auditoriums used for concerts, art in-
stallations, research projects, and public events. Eight
ceiling-mounted video cameras were placed at two loca-
tions (four in Studio 1 and four in the mezzanine) where
participants visited display booths according to their
level of interest. The video cameras were calibrated to
capture distinct but overlapping fields of view such that
the entire space in each location was recorded. Each
camera recorded 4 hours of video on April 27, the
second day of the event.

Analysis

For this proof-of-concept project, we randomly selected
a 3-minute clip of video recordings from Studio 1 for
analysis. Video analysis techniques were used to detect
and track multiple subjects by measuring the optical
flow of low-level features (corners, edges, lines, color,
and texture) using Matlab programming [9-13]. The
tracking approach identifies group structures formed in
the crowd, updates the structure configurations continu-
ously, and tracks subjects in a unique way that preserves
the structural configuration. Each subject’s motion path
and interaction data (contact frequency and statistics on
spatial proximity) are then extracted. We provide more
detail in the supplement to this article and in Yan et al.
[13]. Contact data were computed for 5 GameFest at-
tendees. An attendee was considered to have a contact
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event if the distance between the attendee and another
person was <1 meter.

In this proof-of-concept project, we also explored the
use of IMPACT, an existing Oak Ridge National Labora-
tory (ORNL) platform, for conducting random mixing
simulations [15], including the use of the application’s
drawing tools to outline the boundaries of Studio 1 in a
geospatially-accurate way. In this simulation, we intro-
duced 50 participants to Studio 1 using a uniform X:Y
distribution for their starting point, with proximity bet-
ween participants determined by each participant’s ran-
dom direction (0 to 360 degrees) and step size based on
a Gaussian distribution at one-second intervals. Physical
barriers in Studio 1 including the display booths re-
stricted participants’ movements and contact with other
participants.

As with other public venues at RPI, EMPAC uses video
cameras for security purposes. Therefore, the attendees at
GameFest had no assumptions of privacy. The project
video cameras were ceiling-mounted, and the low-level
feature tracking could not be used to identify attendees.
Since the attendees were only imaged from above at a
public event, and were not personally identifiable, no con-
sent was collected from the attendees, and their motions
were natural. We received permission for camera installa-
tion and filming from EMPAC staff and GameFest event
organizers. This project was reviewed and approved by
the Institutional Review Boards at RPI and Oak Ridge
Associated Universities. The Human Subjects Research
Office at the Centers for Disease Control and Prevention
determined that this was an evaluation project and, there-
fore, exempt from IRB review.

Results

The 5 attendees had an overall median of 2 contact events
during the 3-minute video clip (range: 0-6) (Figure 1).
Contact events were typically not continuous, varying
from less than 5 seconds to the full duration of the
3-minute clip. The number of contact events differed
among the five attendees, but were relatively consistent
for each attendee across the duration of the clip (Table 1).
Figure 2 shows a snapshot from the end of a 3-minute
simulation of 50 attendees in a geo-spatially accurate rep-
resentation of Studio 1, assuming random mixing among
GameFest attendees.

Discussion

Due to existing limitations in capturing mixing patterns
at mass gatherings, we developed a proof-of-concept
project to assess the use of video recordings for esti-
mating contact rates at the GameFest event in Troy,
New York, in 2013. We used video analysis to estimate
the number and duration of contacts for 5 event at-
tendees. The project suggests that video tracking and
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Five subjects (A-E) and the attendees around them
were tracked using video data to extract contact
information. Tracking was performed for approximately
3 minutes. Subjects were engaged in different activities:

Subject A —in short conversation then walks away
Subject B = demonstrating to a group

Subject C - observing demonstration

Subject D - cbserving demonstration closely
Subject € - walking around alone

number of contacts
w

0 2 ) ]

i i M B
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seconds

Figure 1 Attendees captured during three-minute video clip, GameFest event, April 2013, with the number and duration of contacts of
5 attendees (A-E) during the clip. A contact event was defined as contact between attendees and any other person within a distance <1meter.

analysis may be feasible for generating contact parame-
ters in a spatially and temporally accurate way, but more
work is needed to assess this approach in larger and
more diverse mass gathering settings [8,16,17].

Most noteworthy is that we were able to record 100% of
attendees within each selected location at the GameFest
event, while avoiding direct contact with or creating
additional burden for the attendees. This is a possible ad-
vantage compared to other approaches, including the use
of remote sensors, for to capturing contact data from
mass gathering attendees. Remote sensors are small de-
vices, worn on a lanyard or belt that can capture interac-
tions with others also wearing the device, and have been
used to generate social mixing patterns in school settings.
However, a large proportion of the target population is
typically needed in order to accurately describe person-to-
person interactions, which is dependent on volunteer

participation. Researchers using radiofrequency identifica-
tion devices to capture contact data from conference par-
ticipants in France achieved a 30% participation rate [5].
Due to the current lack of empirical data, researchers are
unable to assess if volunteers and non-volunteers (who
may prefer not to be tracked) have different social mixing
behaviors [8].

Remote sensors and similar devices can also get lost,
damaged, or lose power, all potentially impacting data
quality [8]. Though video cameras can get damaged or
lose data, this and related constraints are likely to be
rare events. Additionally, our approach could be applied
to existing video recordings obtained from large mass
gatherings for other purposes, such as public security,
further minimizing data collection challenges; however,
the use of existing video recordings could require ad-
ditional calibration and processing post-collection. Since

Table 1 Median number of contacts per minute for 5 attendees during a 3-minute video clip at the GameFest event,

April 2013

Minutes in video

Median number of contacts

A - Light blue B - Red C - Brown D - Dark blue E - Green
1 1 5 1 3 0
2 0 5 1 2 0
3* 1 5 2 2 0

*Minute three includes 43 seconds (total video clip = 163 seconds).

A contact event was defined as a contact between the attendee and any other person within a distance <1meter (subjects are denoted by color codes as shown

in Figure 1).
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Figure 2 Snapshot of simulation of 2013 GameFest event (Studio 1), Rensselaer Polytechnic Institute, Troy, NY, April 2013, using
IMPACT computer application. Yellow tracks reflect random mixing of a sample of participants at one-second intervals during a three-minute video
clip. Participants were introduced using a uniform X:Y distribution from their starting point, with proximity between participants determined by each
participant’s random direction (0 to 360 degrees) and step size based on a Gaussian distribution. Physical barriers in Studio 1 restricted participants’
movements and contact with other participants.

video recordings are commonly used for security pur-
poses at most public venues, there will be fewer con-
cerns with privacy.

For the proof-of-concept project, we defined a contact
event if the distance between the selected attendee and
another person was <1 meter. Using this definition, our
5 attendees had a median of 2 contact events during the
3-minute video clip. Coding changes in Matlab program-
ming for further analysis of the video recordings can
increase the contact definition to less than or equal to 2
meters, the commonly used threshold for influenza
transmission through respiratory droplets [2]. Video
analysis allows the user to modify the contact definition
after data collection but also to explore qualitative
mixing behavior commonly not collected through current
contact data collection tools. In low-density mass gather-
ings, information on physical contact (e.g., a handshake or
kiss) as well as closeness of contact could be quantified
and eventually added to simulation models.

Age is an important predictor for a number of infec-
tious diseases, including influenza [18]. During the re-
cent Influenza A(HIN1) pandemic in 2009, the majority
of reported cases in the United States occurred in the
school-aged population [19,20]. Older-aged cohorts ex-
perienced lower attack rates, presumably due to residual

immunity from previous infections with genetically simi-
lar influenza viruses [21,22]. Our approach using video
analysis was not able to generate age-specific contact
data that would be required for influenza transmission
models. Contact surveys (either web-based or paper)
and the distribution of remote sensing devices allow
researchers to collect demographic information on
participants [6,7]. To address the limitation, general in-
formation on attendees (e.g., age, place of residence, and
duration of stay) could be obtained from mass gathering
organizers and proportionally distributed across at-
tendees identified through video analysis.

While video analysis could provide important informa-
tion on social mixing at mass gatherings, computer cap-
acity could be a constraining factor [14,23]. Our video
analysis relied on a multi-person tracking algorithm
based on hierarchical group structures to track subjects
along with the other participants in the scene. Video
analysis for this proof of concept project was performed
on a single desktop computer. Automated video analysis
for the entire video data (~40 hours of video) could re-
quire parallel implementations of the algorithm or exe-
cuting the algorithm on a high-performance computing
platform. High-density mass gatherings such as the Hajj
or the Olympics could require extremely high-resolution
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cameras and more complex feature tracking, increasing
the computational demand. Analysis of existing video re-
cordings from such events could assist in evaluating the
potential error rate (e.g., losing unique objects or merge
and split events) in tracking individuals in such densely
populated environments [9-14].

Our proof-of-concept project used a 3-minute clip from
a single video camera. The ability to stitch together the
frames and track participants across multiple cameras with
a high level of precision will be required [9-14]. This work
is currently in progress for the eight cameras used at the
Game Fest event. Following this process, we will be able to
simultaneously track attendees and estimate the number
and duration of contacts at different time frames across
the two event locations (Studio 1 and the Mezzanine).
A previously implemented real-time airport security
checkpoint surveillance system using a camera network
demonstrates the feasibility of this approach [14]. In
this surveillance system, a network of 19 cameras was
used to track airline passengers and their carry-on bags
through security. The system was robust to populated
and complex interactions common to mass transit
settings [14].

Scaling up our video analysis will focus on identifying
key locations and time frames likely to be representative
of social mixing patterns across the mass gathering
venue. Complete and simultaneous coverage (of all
attendees for the full duration of the gathering) is likely
infeasible due to computational requirements. However,
for the purpose of estimating contact rates for modeling
infectious disease transmission, complete attendee cove-
rage may not be required. The durations of contacts
across a subset of mass gathering attendees (rather than
the full social network) could be sufficient to explain in-
fectious disease transmission dynamics [5,16].

Following completion of the analysis of the GameFest
event video recordings and refinement of the automated
analysis process, we propose to implement a larger study
to compare the video analysis results with other ap-
proaches for contact rate estimation. Assessment of mi-
xing patterns in school settings has used a combination
of contact surveys and remote sensors over one or more
days [6,24]. We propose to use a similar combination of
video recordings and remote sensors along with the
collection of demographic information to compare and
contrast contact characteristics of mass gathering at-
tendees. To ensure the appropriate linkage between the
two sources of contact data for individual attendees, we
will select a small subset of volunteer attendees to wear
a specifically designed marker (e.g., hat or jacket) that
will facilitate identification of this individual in the video
recordings. A small experiment at EMPAC or another
location will be implemented in advance to test the link-
age process.
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The results of the initial IMPACT simulation of at-
tendee interactions assuming random mixing in Studio 1
can serve as a baseline and be compared with future
simulations using statistical distributions of the number
and duration of contacts derived from the analysis of
video recordings from GameFest. These results have the
potential to help public health professionals determine
whether precise contact parameter estimates are needed
for simulations, or whether assumptions of random
mixing could provide valid approximations for exploring
infectious disease transmission at certain types of gather-
ings (e.g., professional conferences versus sporting
events). IMPACT allows users to modify both micro-
and macro- environments of a real or hypothetical set-
ting, and therefore can be used for simulating mixing
patterns and transmission dynamics at other mass
gatherings [15-17].

Available evidence suggests that restricting mass ga-
therings in addition to implementing other social dis-
tancing measures (e.g., school closures) could help
mitigate pandemic influenza transmission [25]. This
evidence is primarily based on surveillance reports and
outbreak investigations that rely on case detection
with limited differentiation between types of mass
gatherings. Projects to better estimate social mixing at
mass gatherings, such as our proof-of-concept project,
may help provide insight on transmission dynamics
and generate information through computer simula-
tions on the probabilities of pandemic propagation at
and after the gathering, as well as describe the variabil-
ity in these outputs by type of mass gathering (i.e.,
venue, purpose, size, and duration) [16,17,25-27]. A
combination of approaches will likely be needed to
capture the complex social mixing patterns at mass
gatherings.

Conclusion

Our project demonstrated the use of video analysis to
estimate contact rates of 5 attendees at a mass gather-
ing. The next phase of work will involve scaling the
system for simultaneous analysis of hours-long video
recordings. Comparing the results of our approach
with other methods for contact rate estimation could
assist in further refinement of our video analysis tech-
niques. The generated contact parameters may help
improve computer simulations of influenza transmis-
sion at a mass gathering using IMPACT or other model-
ing applications, with the goal of identifying effective
prevention and control strategies, including whether a
mass gathering should be postponed or cancelled during a
pandemic.
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